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ON DEFORMATION RINGS OF RESIDUALLY REDUCIBLE

GALOIS REPRESENTATIONS AND R = T THEOREMS

TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2

Abstract. We study the crystalline universal deformation ring R (and its
ideal of reducibility I) of a mod p Galois representation ρ0 of dimension n

whose semisimplification is the direct sum of two absolutely irreducible mu-
tually non-isomorphic constituents ρ1 and ρ2. Under some assumptions on
Selmer groups associated with ρ1 and ρ2 we show that R/I is cyclic and often
finite. Using ideas and results of (but somewhat different assumptions from)
Belläıche and Chenevier we prove that I is principal for essentially self-dual
representations and deduce statements about the structure of R. Using a new
commutative algebra criterion we show that given enough information on the
Hecke side one gets an R = T -theorem. We then apply the technique to modu-
larity problems for 2-dimensional representations over an imaginary quadratic
field and a 4-dimensional representation over Q.

1. Introduction

Let F be a number field, Σ a finite set of primes of F and GΣ the Galois group
of the maximal extension of F unramified outside Σ. Let E be a finite extension
of Qp with ring of integers O and residue field F. Let ρ0 : GΣ → GLn(F) be a
non-semi-simple continuous representation of the Galois group GΣ with coefficients
in F. Suppose that ρ0 has the form

ρ0 =

[

ρ1 ∗
0 ρ2

]

for two absolutely irreducible continuous representations ρi : GΣ → GLni
(F) with

n1 + n2 = n. The goal of this article is to study the crystalline universal defor-
mation ring RΣ of ρ0 and in favorable cases show that it is isomorphic to a Hecke
algebra TΣ associated to automorphic forms on some algebraic group. Our ap-
proach relies on studying the ideal of reducibility I ⊂ RΣ as defined by Belläıche
and Chenevier and the quotient RΣ/I. Roughly speaking the latter “captures” the
reducible deformations, while the former captures the irreducible ones. As a first
result we prove that under some self-duality condition imposed on the deformations
the ideal I is principal (section 2). In contrast to [BC09] we do not assume that
the trace of our universal deformation is “generically irreducible”. As a result we
cannot affirm that I is generated by a non-zero divisor, but this is not needed for
our main results. We can, however, still show that I is generated by a non-zero
divisor under a certain finiteness assumption (section 3), which is only used for
results concerning Rred

Σ , the quotient of RΣ by its nilradical.
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We then study the quotient RΣ/I. Under the following two major assumptions:

• that the crystalline universal deformation rings of ρ1 and ρ2 are discrete
valuation rings (= O);
• that the Selmer group H1

Σ(F,HomF(ρ2, ρ1)) is one-dimensional (see section
4 for the definition of H1

Σ),

we prove that the O-algebra structure map O → RΣ/I is surjective (section 6.3).
Combining this with the principality of I we show (section 6.4) that

• RΣ is a quotient of O[[X ]],
• the reduced universal deformation ring Rred

Σ is a complete intersection.

The above properties give us enough control on the ring RΣ to formulate some nu-
merical conditions (which if satisfied) imply anR = T theorem in this n-dimensional
context (section 8). In fact, our method can be summarized as follows. Sup-
pose that we have an O-algebra surjection φ : RΣ ։ TΣ which induces a map
φ : RΣ/I ։ TΣ/φ(I). The surjection O ։ RΣ/I often factors through an isomor-
phism O/̟m ∼= RΣ/I. In fact the size of RΣ/I is bounded from above by the size of
a certain Selmer group, H1

Σ(F,HomO(ρ̃2, ρ̃1)⊗E/O), where ρ̃i denotes the unique
lift of ρi to GLni

(O). Thus assuming #H1
Σ(F,HomO(ρ̃2, ρ̃1)⊗ E/O) ≤ #TΣ/φ(I)

we conclude that φ is an isomorphism. We then apply a new commutative algebra
criterion (section 7) which uses principality of I as an input to allow us to conclude
that φ itself must have been an isomorphism.

One way to achieve the inequality #H1
Σ(F,HomO(ρ̃2, ρ̃1)⊗E/O) ≤ #TΣ/φ(I) is

to relate both sides to the same L-value (these are the numerical conditions referred
to above). Many results bounding the right-hand side from below by the relevant
L-value are available in the literature (see sections 9 and 10 for examples of such
results). A corresponding upper-bound on #H1

Σ(F,HomO(ρ̃2, ρ̃1) ⊗ E/O) can be
deduced from the relevant case of the Bloch-Kato conjecture. See Theorems 8.5
and 8.6, where the numerical conditions are stated precisely. In particular it is
also possible to apply our method if RΣ/I is infinite. In this case our commutative
algebra criterion is an alternative to the criterion of Wiles and Lenstra.

Let us now make some remarks about relations of our approach to other mod-
ularity results. As is perhaps obvious to the informed reader, it is different from
the Taylor-Wiles method. Also, our residual representations are not “big” in the
sense of Clozel, Harris and Taylor [CHT08]. There is some connection between
our setup and that of Skinner and Wiles [SW97], who studied residually reducible
2-dimesional representations of GQ, but the main arguments are different. A proto-
type of this method has already been employed by the authors to prove an R = T -
theorem for two-dimensional residually reducible Galois representations over an
imaginary quadratic field [BK09, BK11]. However, the assumptions of [BK11] are
different and the proofs reflect the “abelian” context of that article, and mostly
could not be generalized to the current setup. In particular the principality of the
ideal of reducibility in that context was a simple consequence of a certain unique-
ness condition imposed on ρ0. In the “non-abelian” setup the analogous uniqueness
condition is almost never satisfied. Finally let us note, that unlike recent higher
dimensional modularity results of Taylor et al. (e.g. [Tay08, Ger10, BLGGT10])
which prove Rred = T theorems, our method implies that RΣ is reduced.

In order to study crystalline deformations we establish certain functoriality prop-
erties of the Selmer groups H1

Σ(F,HomO(ρ̃i, ρ̃j)⊗E/O) for i, j ∈ {1, 2}. In partic-
ular we need to know that these Selmer groups behave well with respect to taking
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fixed-order torsion elements. On the other hand our numerical criteria strongly sug-
gest that the bounds imposed to control the order of these Selmer groups should be
given by L-values. Conjecturally, it is the Bloch-Kato Selmer groups whose orders
are controlled by these L-values, hence we also relate compare these to our Selmer
groups H1

Σ(F,HomO(ρ̃i, ρ̃j)⊗ E/O). This is all done in section 4.
Let us now discuss the “numerical conditions” in more detail. They fall into

two categories depending on whether one has a reducible lift to characteristic zero
or not. We will focus here on the case when no such lift exists. (We refer the
reader to Theorems 8.5 and 8.6 for the precise statement and to the discussion
following the theorems.) One of them is a lower bound on the order of the quotient
TΣ/φ(I) = TΣ/J , where T is a certain “non-Eisenstein” Hecke algebra and J is
the corresponding “Eisenstein ideal”. Such quotients (and lower bounds on them)
have been studied by many authors, for example [SW99], [Ber09] (where J is indeed
the Eisenstein ideal) and [Bro07], [Klo09] (where J is the CAP ideal - see [Klo09]
for a precise definition), or [AK10] (where J is the “Yoshida ideal”). In general
this quotient measures congruences between automorphic forms with irreducible
Galois representation and a fixed automorphic form “lifted” from a proper Levi
subgroup (Eisenstein series, Saito-Kurowawa lift, Maass lift, Yoshida lift). Each
of these results bound this module from below by a certain L-value, which in fact
is the L-value which conjecturally gives the order of the Bloch-Kato Selmer group
H1
f (F,HomO(ρ̃2, ρ̃1)⊗ E/O). The second numerical condition is the upper bound

on the order of a related Selmer group H1
Σ(F,HomO(ρ̃2, ρ̃1) ⊗ E/O) by the same

number. This condition thus seems to require (the ̟-part of) the Bloch-Kato
conjecture for HomO(ρ̃2, ρ̃1) and is currently out of reach in most cases when ρ1
and ρ2 are not characters. So, our R = T result (Theorem 8.5) should be viewed
as a statement asserting that under certain assumptions on the Hecke side (the ̟-
part of) the Bloch-Kato conjecture for HomO(ρ̃2, ρ̃1) (which in principle controls
extensions of ρ̃2 by ρ̃1 hence reducible deformations of ρ0) implies an R = T -theorem
(which asserts modularity of both the reducible and the irreducible deformations of
ρ0). The fact that we can deduce modularity of all deformations from a statement
about just reducible deformations is a consequence of the principality of the ideal
of reducibility (whose size roughly speaking controls the irreducible deformations)
and the commutative algebra criterion.

In the last two sections of the article we study two examples in which some (or
all) of the conditions can be checked. The first example is still of an abelian nature
and is in a sense a “crystalline” complement to our previous two articles [BK09]
and [BK11], where we studied ordinary deformations. The second example is much
less special and is in fact a prototypical higher-dimensional problem to which we
hope our result may be applied. In this example we study certain irreducible four-
dimensional crystalline deformations of a representation of the form

ρ0 =

[

ρf (k/2− 1) ∗
0 ρg

]

,

where ρf and ρg are reductions of the Galois representations attached to two el-
liptic cusp forms f and g of weights 2 and k=even respectively. Using results of
[AK10] and [BDSP10] which under some assumptions provide one of the numerical
conditions (a lower bound on #TΣ/J) we prove that the Bloch-Kato conjecture in
this context implies that every such deformation of ρ0 is modular (i.e., comes from
a Siegel modular form). For a precise statement see Theorem 10.3.
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2. Principality of Reducibility ideals

Let A be a Noetherian henselian local (commutative) ring with maximal ideal
mA and residue field F and let R be an A-algebra. Let ρ : R → Mn(A) be a
morphism of A-algebras and put T = tr ρ : R → A. We assume n! is invertible in
A and

ρ =

[

τ1 ∗
0 τ2

]

mod mA

is a non-semisimple extension of τ2 by τ1 for two non-isomorphic absolutely irre-
ducible representations τi of dimension ni.

Definition 2.1 ([BC09] Definition 1.5.2). The ideal of reducibility of T is the
smallest ideal I of A such that tr (ρ) mod I is the sum of two pseudocharacters
T1, T2 such that Ti = tr τi mod mA. We will denote it by IT . (For a definition of a
pseudocharacter see e.g. [loc.cit], section 1.2.)

Definition 2.2 ([BC09] Section 1.2.4). The kernel of a pseudocharacter T : R→ A
is the two-sided ideal of R defined by

kerT = {x ∈ R : ∀y ∈ R, T (xy) = 0}.

Remark 2.3. Note that T is an A-module homomorphism. If KT denotes the
kernel of T as an A-module map, then clearly KT ⊃ kerT . This inclusion is in
general strict, and in fact it is often the case that kerT = ker ρ (see section 3).

Definition 2.4 ([BC09] Definition 1.3.1). Let S be an A-algebra. Then S is a
generalized matrix algebra (GMA) of type (n1, n2) if S is equipped with a data of
idempotents E = {ei, ψi, i = 1, 2} with

(1) a pair of orthogonal idempotents e1, e2 of sum 1,
(2) for each i, an A-algebra isomorphism ψi : eiSei →Mni

(A),

such that the trace T : S → A, defined by T (x) :=
∑2
i=1 tr (ψi(eixei)), satisfies

T (xy) = T (yx) for all x, y ∈ S.

By [BC09] Example 1.2.4 and Section 1.2.5 we know that both Rρ := R/ kerρ
and RT := R/ kerT are Cayley-Hamilton quotients (cf. Definition 1.2.3 in [BC09])
of (R, T ) and the quotient map

ϕ : Rρ ։ RT

is an A-algebra morphism with kernel kerTRρ (so a two-sided ideal).
By [BC09] Lemma 1.4.3 we can now find suitable data of idempotents to give

both Rρ and RT the structure of a GMA:
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Lemma 2.5. There exist data of idempotents ET = {eTi , ψ
T
i , i = 1, 2} for RT and

Eρ = {eρi , ψ
ρ
i , i = 1, 2} for Rρ such that for † = ρ, T

(1) T (e†i ) = ni,
(2) ϕ(eρi ) = eTi ,
(3) T (eixei) = tr τi(x) mod mA,
(4) If i 6= j, T (eixejyei) ∈ mA for any x, y ∈ R,
(5) ψρi ◦ ϕ = ψTi ,
(6) ψρi lifts τi|eiRρei

: eiR
ρei → Mni

(F) such that for all x ∈ eiR
ρei, T (x) =

tr ψρi (x).

These data of idempotents define A-submodules A†
i,j of R† for † = T, ρ such that

there are canonical isomorphisms of A-algebras

R† ∼=

[

Mn1(A
†
1,1) Mn1,n2(A

†
1,2)

Mn2,n1(A
†
2,1) Mn2(A

†
2,2)

]

and ϕ(Aρi,j) = A
T
i,j.

Remark 2.6. If R is endowed with an anti-automorphism τ (see below) then
Lemma 1.8.3 of [BC09] ensures that the idempotents ei as in Lemma 2.5 can be

chosen so that τ(e†i ) = e†i .

Proof. We lift the idempotents of R/ kerT in [BC09] Lemma 1.4.3 and 1.8.3 com-
patibly to Rρ and RT , i.e. such that ϕ(eρi ) = eTi (by first lifting them to RT and
then further to Rρ). We also choose the ψρi,j and ψ

T
i,j in Lemma 1.4.3 compatibly so

that we can also pick Eρi ∈ eiR
ρei and E

T
i ∈ eiR

T ei (as in [BC09] Notation 1.3.3)
with ϕ(Eρi ) = ETi .

Define A-submodules A∗
i,j = E∗

i R
∗E∗

j ⊂ R∗ for ∗ = ρ, T . Note that this is how

[BC09] Proposition 1.4.4(i) defines ATi,j (i.e. via [BC09] Lemma 1.4.3). By the
above we then have

ϕ(Aρi,j) = A
T
i,j .

�

Proposition 2.7. One has IT = T (AT1,2A
T
2,1).

Proof. This follows from [BC09], Proposition 1.5.1. �

Proposition 2.8. The A-module AT1,2 is an A-module generated over A by one
element.

Proof. By [BC09] Lemma 1.3.7 one can conjugate by an invertible matrix with
values in A (we use here that, since A is local, every finite type projective A-module
is free) to get ρ adapted to E in the sense of [BC09] Definition 1.3.6.

Now by [BC09] Proposition 1.3.8 we know that ρ(R) is the standard GMA at-
tached to some ideals Aρ1,2, A

ρ
2,1 of A. Put Aρ1,1 = Aρ2,2 = A. The definition of

adaptedness to the data of idempotents E means concretely that for every r ∈ R

ρ(r) =

[

a1,1(r) a1,2(r)
a2,1(r) a2,2(r)

]

with ai,j(r) ∈ Mni,nj
(Aρi,j) and a1,1(r) ≡ τ1(r) mod mA and a2,2(r) ≡ τ2(r)

mod mA. Now since ρ ⊗ F must still be a non-split extension of τ2 by τ1 we



6 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2

deduce that for the image Aρ1,2 of the ideal Aρ1,2 in A/mA we have Aρ1,2 6= 0, hence

Aρ1,2 = A.
By the arguments in the proof of Proposition 1.3.8 we see that we obtain the

ideals Aρi,j of A from Aρi,j via A-linear maps fi,j (for definition see [loc. cit]), i.e.,

Aρi,j = fi,j(A
ρ
i,j). The maps fi,j are injective since ρ is on Rρ, hence we conclude

that Aρ1,2
∼= A. By Lemma 2.5 we have ϕ(Aρ1,2) = A

T
1,2. Hence AT1,2 is generated

over A by one element. �

To show that IT is principal using Proposition 2.8, we will now show that AT1,2
∼=

AT2,1 as A-modules under an additional assumption on the existence of an involution
on R.

Let τ : R → R be an anti-automorphism (i.e., τ(xy) = τ(y)τ(x)) of A-algebras
such that τ2 = id. For an A-algebra B, and an A-algebra homomorphism ρ : R→
Mn(B) put ρ⊥ = t(ρ ◦ τ).

Example 2.9. Here are some examples of anti-automorphisms if R = A[G] for
suitable Galois groups G:

(1) τ : g 7→ g−1 corresponding to ρ⊥ = ρ∗ (contragredient);
(2) τ : g 7→ cg−1c for c an order 2 element in G corresponding to ρ⊥ = (ρc)∗;
(3) τ : g 7→ χ−1(g)g−1 for a character χ : G → O× corresponding to ρ⊥ =

ρ∗ ⊗ χ−1.

Assume in addition that

(2.1) T ◦ τ = T and tr τi ◦ τ = tr τi, (i = 1, 2).

Remark 2.10. By [BC09] p.47, if ρ is a semisimple representation, valued in a
field, then T being invariant under τ is equivalent to ρ⊥ ∼= ρ.

Theorem 2.11. If τ as in (2.1) exists, then AT1,2
∼= AT2,1 and IT is a principal

ideal of A.

Proof. The first assertion follows from [BC09], Lemma 1.8.5(ii) (here we use that
kerT is stable under involution τ which is not true for ker ρ in general). By Propo-
sition 2.7 we have IT = T (AT1,2A

T
2,1). Let gi,j be a generator of ATi,j , i.e., write

ATi,j = gi,jA. Then IT = T (g1,2Ag2,1A) = AT (g1,2g2,1) ⊂ A. �

Remark 2.12. If τ as in (2.1) does not exist, but τ1 and τ2 are characters which
satisfy

dimFH
1(G,Hom(τ1, τ2)) = dimFH

1(G,Hom(τ2, τ1)) = 1

then IT is principal by a result of Belläıche-Chenevier and Calegari (see for example
[Cal06], Proof of Lemma 3.4).

3. ker ρ = kerT

Let ρ : R → Mn(A) and T : R → A be as in the previous section. The goal of
this section is to prove Proposition 3.1. If one replaces the assumption that A/IT
be finite with the assumption that T ⊗ Ks is irreducible for every s, then this is
proved in [BC09], Proposition 1.6.4. In this section we assume that A is reduced,
write K for its total fraction ring, which is a finite product of fields K =

∏

s∈S Ks.

Proposition 3.1. Assume that A is reduced, infinite but #A/IT < ∞. Then
kerρ = kerT .
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Proof. We clearly have ker ρ ⊂ kerT . Put S := R/ kerρ ∼= ρ(R) ⊂ Mn(A). Write
T ′ for the pseudocharacter on S induced by T . We will show using a sequence of
lemmas that (S/ kerT ′) ⊗ K ∼= Mn(K). This implies that S ⊗ K ∼= Mn(K) and
therefore that kerT ′⊗K = 0. Note that kerT ′ injects into kerT ′⊗K because the
other three maps in the following (commutative) diagram

S // S ⊗K

kerT ′

OO

// kerT ′ ⊗K

OO

are injective. So kerT ′ = 0 which finishes the proof of the proposition.
To show (S/ kerT ′)⊗AK ∼=Mn(K) we first note that A →֒

∏

sAs ⊂
∏

sKs = K,
where the products are over all minimal primes ps and As = A/ps.

Lemma 3.2. As is infinite for all s.

Proof. If As is finite then As is a field because it is a domain. Hence ps equals the
unique maximal ideal of A, so ps is the only minimal prime ideal, hence A ⊂ As is
a finite field, contradicting our assumption. �

Lemma 3.3. We have A/IT ⊗A K = 0 and hence IT ⊗A K = K.

Proof. By flatness of tensoring with K it suffices to show that A/IT ⊗A K = 0.
Denote by φs : A։ As. Then A/IT ։ As/φs(IT ) and the latter must be finite, so
by Lemma 3.2 φs(IT ) 6= 0. This implies that As/φs(IT )⊗As

Ks = 0. Now observe
that

A/IT ⊗A K = A/IT ⊗A
∏

s

Ks =
∏

s

A/IT ⊗A Ks =
∏

s

As/φs(IT )⊗As
Ks = 0.

�

By [BC09], Proposition 1.4.4(ii) we have

S/ kerT ′ ∼=

[

Mn1(A) Mn1,n2(A1,2)
Mn2,n1(A2,1) Mn2(A)

]

⊂Mn(K),

for some fractional ideals (in the sense of [BC09], p.27) A1,2, A2,1 ⊂ K.

Lemma 3.4. We have A1,2 ⊗K = A2,1 ⊗K = K.

Proof. Let I be any K-submodule of K =
∏

s∈S Ks. Then I =
∏

s∈T ⊂S Ks. By
the definition of a fractional ideal ([BC09] p.27) there exists fi,j ∈ A such that
fi,jAi,j ⊂ A so we have Ai,j ⊗ K ⊂ K by flatness of ⊗AK. Assume now that
A1,2 ⊗A K =

∏

s∈T ⊂S Ks ⊂ K. This implies that A2,1A1,2 ⊗K =
∏

s∈T ′⊂T Ks ⊂
∏

s∈T ⊂S Ks since it is a K-submodule. Since Ai,j ∼= Ai,j with Ai,j as in Lemma 2.5
by [BC09], Theorem 1.4.4(ii), we have the following surjective map of A-modules

A2,1 ⊗A A1,2
∼= A1,2 ⊗A A2,1 ։ A1,2A2,1

T ′

−→ IT (the last map is a surjection by
Proposition 2.7), so A1,2⊗A2,1⊗K surjects onto IT ⊗K which equals K by Lemma
3.3, hence we must have T ′ = T = S. �

This finishes the proof of the proposition. �

Corollary 3.5. Assume that A is reduced, inifinite but #A/IT <∞. Also assume
that τ as in (2.1) exists. Then IT is principal and generated by a non-zero-divisor.
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Proof. Principality of IT follows from Theorem 2.11. Arguing as in the proofs of
Propositions 1.7.4 and 1.7.5 in [BC09], one sees that IT is generated by f1,2f2,1
(with fi,j as in the proof of Lemma 3.4), which is a non-zero divisor. �

4. Functoriality of short crystalline representations

In Theorem 6.4 we want to relate residual Selmer groups to Bloch-Kato Selmer
groups. In this section we define these and collect some results of Fontaine-Laffaille
and Bloch-Kato on short crystalline representations and deduce a functoriality of
the Selmer groups with respect to short exact sequences of finite Galois modules.
Our exposition is influenced by that of [DFG04] Section 2.1 and [Wes00].

4.1. Notation for Galois cohomology. For any field F , we write GF for its
absolute Galois group Gal(F/F ) (for some implicit fixed choice of algebraic closure
F ). If F is a field and M is a topological abelian group with an action of GF , we
always assume that this action is continuous with respect to the profinite topology
on GF and the given topology on M . If L/K is an extension of fields and M is
a topological Gal(L/K)-module, then we write Hi(L/K,M) for the cohomology
group Hi(Gal(L/K),M), computed with continous cochains. If L is a separable
algebraic closure of K then we just write Hi(K,M).

4.2. Local cohomology groups. Fix a prime p and let O be the ring of integers
in a finite extension of Qp and uniformizer ̟. For a prime ℓ let K be a finite
extension of Qℓ. Let M be an O-module with an O-linear action of GK . We call
M a p-adic GK-module over O if one of the following holds:

(1) M is finitely generated, i.e. a finitely generated Zp-module and the GK -
action is continuous for the p-adic topology on M ;

(2) M is discrete, i.e. a torsion Zp-module of finite corank (i.e. M is isomorphic
as a Zp-module to (Qp/Zp)

r ⊕M ′ for some r ≥ 0 and some Zp-module M ′

of finite order) and the GK -action on M is continuous for the discrete
topology on M ;

(3) M is a finite-dimensional Qp vector space and the GK -action is continuous
for the p-adic topology on M .

M is both finitely generated and discrete if and only if it is of finite cardinality.

Definition 4.1. A local finite-singular structure on M consists of a choice of O-
submodule N(K,M) ⊆ H1(K,M).

4.2.1. ℓ = p. Consider first ℓ = p. Assume that K is unramified over Qp. We will
be using the crystalline local finite-singular structure, defined in the following.

Let T ⊆ V be a GK -stable Zp-lattice and put W = V/T . For n ≥ 1, put

Wn = {x ∈ W : ̟nx = 0} ∼= T/̟nT.

Following Bloch and Kato we define N(K,V ) = H1
f (K,V ) = ker(H1(K,V ) →

H1(K,Bcrys ⊗ V )), denote by H1
f (K,T ) its pullback via the natural map T →֒ V

and let N(K,W ) = H1
f (K,W ) = im(H1

f (K,V )→ H1(K,W )).
For finitely generated p-adic GK-modules we recall the theory of Fontaine-

Laffaille [FL82], following the exposition in [CHT08] Section 2.4.1. Let MFO

(“Dieudonné modules”) denote the category of finitely generated O-modules M

together with a decreasing filtration FiliM by O-submodules which are O-direct
summands with Fil0M = M and Filp−1M = (0) and Frobenius linear maps
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Φi : FiliM → M with Φi|Fili+1M = pΦi+1 and
∑

ΦiFiliM = M . They define
an exact, fully faithful covariant functor G of O-linear categories from MFO (in
their notation Gṽ and MFO,ṽ) to the category of finitely generated O-modules
with continuous action by GK . Its essential image is closed under taking subquo-
tients and contains quotients of lattices in short crystalline representations defined
as follows: We call V a continuous finite-dimensional GK -representation over Qp

short crystalline if, for all places v | p, Fil0D = D and Filp−1D = (0) for the
filtered vector space D = (Bcrys ⊗Qp

V )Gv defined by Fontaine. Note that this
differs slightly from the definition in Section 1.1.2 of [DFG04] and follows instead
the more restrictive setting of [CHT08] Section 2.4.1.

For any p-adic GK -module M of finite cardinality in the essential image of G we
defineH1

f (K,M) as the image of Ext1MFO
(1FD, D) inH1(K,M) ∼= Ext1O[GK ](1,M),

where G(D) =M and 1FD is the unit filtered Dieudonné module defined in Lemma
4.4 of [BK90].

Remark 4.2. Note that we define H1
f (K,W ) and H1

f (K,Wn) in two different

ways (using the Bloch-Kato definition for the first group and the G-functor for the
latter). However, it is in fact true that the isomorphism W = lim

−→
n

Wn induces an

isomorphism H1
f (K,W ) = lim

−→
n

H1
f (K,Wn) (cf. Proposition 2.2 in [DFG04]).

Lemma 4.3. Let

0→ T ′ i
→ T

j
→ T ′′ → 0

be an exact sequence of finite p-adic GK-modules in the essential image of G. Then
there is an exact sequence of O-modules

0→ H0(K,T ′)→ H0(K,T )→ H0(K,T ′′)→ H1
f (K,T

′)→ H1
f (K,T )→ H1

f (K,T
′′)→ 0.

Proof. Let D∗ be elements ofMFO such that G(D∗) = T ∗. This follows from the
functoriality of the Ext-functor and Ext0(1, D) = H0(K,G(D)) and Ext2(1, D) = 0
for any Dieudonné module D. �

By Lemma 4.3 we have the following commutative diagram with exact rows:

0 // H0(K,T ′′)/j∗H
0(K,T ) //

=

��

H1
f (K,T

′) //

⊆

��

H1
f (K,T ) //

⊆

��

H1
f (K,T

′′) //

⊆

��

0

0 // H0(K,T ′′)/j∗H
0(K,T ) // H1(K,T ′)

i∗
// H1(K,T )

j∗
// H1(K,T ′′)

This implies

H1
f (K,T

′′) = j∗H
1
f (K,T )

and

H1
f (K,T

′) = i−1
∗ H1

f (K,T ),

by comparing the first row with the exact sequence

0→ H0(K,T ′′)/j∗H
0(K,T )→ i−1

∗ H1
f (K,T )→ H1

f (K,T )→ j∗H
1
f (K,T )→ 0

of [Wes00] Lemma I.3.1.
In the terminology of [Wes00] this says that the local finite-singular crystalline

structures on T ′ and T ′′ are the induced structures giving the crystalline finite-
singular structure on T .



10 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2

Corollary 4.4. Let W and Wn be as above. Then we have an exact sequence of
O-modules

0→ H0(K,W )/̟n → H1
f (K,Wn)→ H1

f (K,W )[̟n]→ 0.

Proof. We apply Lemma 4.3 to the exact sequence

0→Wn →Wm
·̟n

−−→Wm−n → 0

for m ≥ n. This implies the exactness of

0→ H0(K,Wm−n)/̟
nH0(K,Wm)→ H1

f (K,Wn)→ H1
f (K,Wm)[̟n]→ 0.

By taking lim
−→
m

we get a short exact sequence

0→ H0(K,W )/̟n → H1
f (K,Wn)→ (lim

−→
m

H1
f (K,Wm))[̟n]→ 0,

so we conclude by Remark 4.2. �

4.2.2. ℓ 6= p. For primes ℓ 6= p we define the unramified local finite-singular struc-
ture on any p-adic GK-module M over O as

N(K,M) = H1
ur(K,M) = ker(H1(K,M)→ H1(Kur,M)),

where Kur is the maximal unramified extension of K.

For an exact sequence 0 → M ′ i
→ M

j
→ M ′′ → 0 of unramified p-adic GK -

modules over O [Wes00] Lemma I.2.1 shows that this structure on M induces the
unramified structures on M ′ and M ′′, i.e.

H1
ur(K,M

′′) = j∗H
1
ur(K,M)

and

(4.1) H1
ur(K,M

′) = i−1
∗ H1

ur(K,M).

Let V be a continuous finite-dimensional GK-representation over Qp and T ⊆ V
be a GK -stable Zp-lattice and put W = V/T . Bloch-Kato then define the following
finite-singular structures on V , T and W :

H1
f (K,V ) = H1

ur(K,V ),

H1
f (K,T ) = i−1H1

f (K,V ) for T
i
→֒ V

and

H1
f (K,W ) = im(H1

f (K,V )→ H1(K,W )).

By [Rub00] Lemma 1.3.5 we haveH1
f (K,W ) = H1

ur(K,W )div. Following [Rub00]

Definition 1.3.4 we define H1
f (K,Wn) just as the inverse image of H1

f (K,W ) under

the map H1(K,Wn) → H1(K,W ). Call this the minimally ramified structure.
For the minimally ramified structure it follows (see e.g. [Rub00] Corollary 1.3.10)
that lim

−→
m

H1
f (K,Wm) = H1

f (K,W ). Note that by [Rub00] Lemma 1.3.5(iv) the

minimally ramified structure agrees with the unramified structure (i.e. H1
f (K,W ) =

H1
ur(K,W ) and H1

f (K,Wn) = H1
ur(K,Wn)) if W is unramified.
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4.3. Global Selmer groups. Let F be a number field and let Σ be a fixed finite
set of finite places of F containing the places Σp lying over p. Assume that p

is unramified in F/Q. For every place v we fix embeddings of F →֒ F v. We
write FΣ for the maximal (Galois) extension of F unramified outside Σ and all the
archimedean places and set GΣ = Gal(FΣ/F ).

We use the terminology of p-adic finitely generated (or discrete) GΣ-modules
similar to the corresponding local notions.

For any p-adic GΣ-module M we defined the crystalline local finite-singular
structure H1

f (Fv,M) for v | p.

Definition 4.5. We define the Selmer group H1
Σ(F,M) of M as the kernel of the

map

H1(FΣ,M)→
∏

v∈Σp

H1(Fv,M)/H1
f (Fv,M).

Note that this Selmer group does not impose any conditions at places in Σ\Σp.
Let V be a continuous finite-dimensional representation of GΣ over Qp which is

short crystalline. Let T ⊆ V be a GΣ-stable lattice and put W = V/T and Wn as
before.

For v ∤ p let H1
f (Fv,M) denote the minimally ramified structure onM =W,Wn,

as defined above. We will also require the definition of the Bloch-Kato Selmer
group, which has more restrictive local conditions:

(4.2) H1
f (F,W ) = ker(H1(FΣ,W )→

∏

v∈Σ

H1(Fv,W )/H1
f (Fv,W ),

where H1
f (Fv,W ) = 0 for v | ∞.

This Bloch-Kato Selmer group is conjecturally related to special L-values. The
two groups H1

Σ(F,W ) and H1
f (F,W ) coincide if the latter also has no local condi-

tions at v ∈ Σ\Σp, i.e. when H
1
f (Kv,W ) = H1(Kv,W ). The following Lemma will

be useful to identify such situations:
Put V ∗ = HomO(V,E(1)), T ∗ = HomO(T,O(1)) and W

∗ = V ∗/T ∗. We define
the v-Euler factor

(4.3) Pv(V
∗, X) = det(1 −XFrobv|(V ∗)Iv ).

Lemma 4.6. H1
Σ(F,W ) = H1

f (F,W ) if for all places v ∈ Σ, v ∤ p we have

(1) Pv(V
∗, 1) ∈ O∗

(2) Tam0
v(T

∗) = 1.

Here the Tamagawa factor Tam0
v(T

∗) equals #H1(Fv, T
∗)tor × |Pv(V

∗, 1)|p (see
[Fon92], Section 11.5).

Proof. Consider a finite place v ∈ Σ. By [Rub00] Proposition 1.4.3 (i) we see that
H1(Fv,W )/H1

f (Fv,W ) is isomorphic to H1
f (Fv, T

∗).

Since the Euler factor Pv(V
∗, 1) 6= 0 we have that H0(Fv, V

∗) = 0 = H1
f (Fv, V

∗)

and so H1
f (Fv, T

∗) = H1(Fv, T
∗)tor (see Fontaine, Asterisque 206, 1992, Section

11.5).
To conclude the lemma we note that H1

f (F,W ) has additional local conditions

at infinity compared to the definition of H1
Σ(F,W ). However, for an archimedean

place v we get that H1(R,W ) = 0 since Gal(C/R) has order 2 and W is pro-p,
and our assumption that p > 2. �



12 TOBIAS BERGER1 AND KRZYSZTOF KLOSIN2

Remark 4.7. We remark that the triviality of H0(Fv , V
∗) and H1

f (Fv, V
∗) imply

via the long exact sequence associated to 0→ T → V →W → 0 that

H1
f (Fv, T

∗) ∼= H0(Fv,W
∗).

InH0(Fv,W
∗) one has a subgroup ((V ∗)Iv/(T ∗)Iv )Frobv=1, which has order |Pv(V

∗, 1)|−1
̟

In fact, the long exact Iv-cohomology sequence

0→ (T ∗)Iv → (V ∗)Iv → (W ∗)Iv → H1(Iv, T
∗)→ H1(Iv, V

∗)

tells us that the index of ((V ∗)Iv/(T ∗)Iv )Frobv=1 inH0(Fv,W
∗) is given by #(H1(Iv, T

∗)Gv

tor).
By Proposition 4.2.2 in [FPR94] we know that the latter equals Tam0

v(T
∗). This

implies that Tam0
v(T

∗) is trivial if W Iv is divisible.

Proposition 4.8. If H0(FΣ,W ) = 0 then we have

H1
Σ(F,Wn) ∼= H1

Σ(F,W )[̟n].

Proof. We note that the local finite-singular structures on Wn are induced from
those onW under the natural inclusionWn →֒W (by (4.1) for v ∤ p or by Corollary
4.4 and the discussion preceding it for v | p). Using this, one shows by a diagram
chase (see proof of [Wes00] Lemma II.3.1) that the exact sequence

0→Wn → W
×̟n

→ W → 0

gives rise to an exact sequence

0→ H0(FΣ,W )/̟n → H1
Σ(F,Wn)→ H1

Σ(F,W )[̟n]→ 0.

�

To conclude this section, we define the notion of a crystalline representation,
following [CHT08] p. 35. Let v | p and A be a complete Noetherian Zp-algebra. A
representation ρ : GFv

→ GLn(A) is crystalline if for each Artinian quotient A′ of
A, ρ⊗A′ lies in the essential image of G.

5. Setup for universal deformation ring

5.1. Main assumptions. Let F be a number field and p > 2 a prime with p ∤
#ClF and p unramified in F/Q. Let Σ be a finite set of finite places of F containing
all the places lying over p. Let GΣ denote the Galois group Gal(FΣ/F ), where FΣ

is the maximal extension of F unramified outside Σ. For every prime q of F we fix
compatible embeddings F →֒ F q →֒ C and write Dq and Iq for the corresponding
decomposition and inertia subgroups of GF (and also their images in GΣ by a slight
abuse of notation). Let E be a (sufficiently large) finite extension of Qp with ring
of integers O and residue field F. We fix a choice of a uniformizer ̟. Consider the
following n-dimensional residual representation:

ρ0 =

[

ρ1 ∗
ρ2

]

: GΣ → GLn(F).

We assume that ρ1 and ρ2 are absolutely irreducible and non-isomorphic (of dimen-
sions n1, n2 respectively with n1 + n2 = n) and that ρ0 is non-semisimple. From
now on assume p ∤ n!. Furthermore, we assume that ρ0 is crystalline at the primes
of F lying over p.
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For i = 1, 2 let Ri,Σ denote the universal deformation ring (so in particular
a local complete Noetherian O-algebra with residue field F) classifying all GΣ-
deformations of ρi that are crystalline at the primes dividing p. So, in particular
we do not impose on our lifts any conditions at primes in Σ \ Σp.

Assumption 5.1. In what follows we make the following assumptions:

(1) dimFH
1
Σ(F,HomF(ρ2, ρ1)) = 1.

(2) R1,Σ = R2,Σ = O. Set ρ̃i, i = 1, 2 to be the unique deformations of ρi to
GLni

(O).

Note that Assumptions 5.1 put certain restrictions on the ramification properties
of the representations ρi. Set Vi,j := HomO(ρ̃i, ρ̃j) ⊗ E/O for i, j ∈ {1, 2}. Fix a
GΣ-stable O-lattice Ti,j in Vi,j and write Wi,j = Vi,j/Ti,j. Assumption 5.1(2) is
equivalent to the following two assertions:

• H1
Σ(F,Wi,i[̟]) = 0 for i = 1, 2.

• There exists a crystalline lift of ρi to GLni
(O).

So, apart from the existence of the lift, both conditions (1) and (2) can be viewed as
conditions on some Selmer groups, more specificallyH1

Σ(F,Wi,i[̟]) andH1
Σ(F,W2,1[̟]) =

H1
Σ(F,HomF(ρ2, ρ1)). When Σ consists only of the primes of F lying above p, then

H1
Σ(F,Wi,j) = H1

f (F,Wi,j) and the size of the latter group is (conjecturally) con-

trolled by an (appropriately normalized) L-value Li,j . By Proposition 4.8 we have
H1
f (F,Wi,j [̟]) = H1

f (F,Wi,j)[̟]. In particular if Σ = Σp and Li,i is a p-adic unit
and L2,1 has ̟-adic valuation equal to 1, the conditions on the Selmer groups are
satisfied. (A weaker condition guaranteeing cyclicity of H1

f (F,W2,1) would suffice,

but cannot be read off from an L-value.) However, in the situations when Σ 6= Σp,
the Selmer groupsH1

Σ are not necessarily the same as the Bloch-Kato Selmer groups
H1
f . For all the applications that we have in mind the following assumption on the

set Σ allows us to control the orders of Selmer groups involved in the arguments:
Assume that for all places v ∈ Σ, v ∤ p and all pairs (i, j) ∈ {(1, 1), (2, 2), (2, 1)}

we have

(1) Pv((Vi,j)
∗, 1) ∈ O∗

(2) Tam0
v((Ti,j)

∗) = 1.

By Lemma 4.6 we then know that we have H1
Σ(F,Wi,j) = H1

f (F,Wi,j), so in
this case the L-value conditions discussed above suffice. Also note that in the
case i = j, Wi,i = ad ρ̃i = ad0 ρ̃i ⊕ F, so the condition reduces to a condition on

H1
Σ(F, ad

0 ρ̃i⊗E/O) as long as we assume that Σ does not contain any prime v with
#kv ≡ 1 mod p because then the condition p ∤ #ClF ensures that H1

Σ(F,F) = 0.

5.2. Definitions. From now on we assume that the representations ρ1 and ρ2 as
well as the set Σ satisfy Assumption 5.1 and that ρ0 is crystalline. Denote the
category of local complete Noetherian O-algebras with residue field F by LCN(E).
An O-deformation of ρ0 is a pair consisting of A ∈ LCN(E) and a strict equivalence
class of continuous representations ρ : GΣ → GLn(A) such that ρ0 = ρ (mod mA),
where mA is the maximal ideal of A. As is customary we will denote a deformation
by a single member of its strict equivalence class.

Definition 5.2. We say that an O-deformation ρ : GΣ → GLn(A) of ρ0 is crys-
talline if ρ|Dq

is crystalline at the primes q lying over p.

Lemma 5.3. The representation ρ0 has scalar centralizer.
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Proof. Let

[

A B
C D

]

∈ GLn(F) lie in the centralizer of ρ0, i.e.,

[

A B
C D

] [

ρ1 f
0 ρ2

]

=

[

ρ1 f
0 ρ2

] [

A B
C D

]

,

where all the matrices are assumed to have appropriate sizes. Then Cρ1 = ρ2C,
hence C = 0, because ρ1 6∼= ρ2. This forces A (resp. D) to lie in the centralizer of ρ1
(resp. ρ2), hence A and D are scalar matrices (equal to, say, a and d respectively)
by Schur’s lemma, since ρ1 and ρ2 are absolutely irreducible. Now, since ρ0 is not
split, there exists g ∈ GΣ such that ρ1(g) = In1 and ρ2(g) = In2 (identity matrices),
but f(g) 6= 0. Then the identity

af +Bρ2 = ρ1B + fd

implies that a = d, hence it reduces to Bρ2 = ρ1B, which implies that B = 0 since
ρ1 6∼= ρ2. �

Since ρ0 has a scalar centralizer and crystallinity is a deformation condition in
the sense of [Maz97], there exists a universal deformation ring which we will denote
by R′

Σ ∈ LCN(E), and a universal crystalline O-deformation ρ′Σ : GΣ → GLn(R
′
Σ)

such that for every A ∈ LCN(E) there is a one-to-one correspondence between the
set of O-algebra maps R′

Σ → A (inducing identity on F) and the set of crystalline
deformations ρ : GΣ → GLn(A) of ρ0.

Suppose that there exists an anti-automorphism τ as in (2.1).

Definition 5.4. For A ∈ LCN(E) we call a crystalline deformation ρ : GΣ →
GLn(A) τ-self-dual or simply self-dual if τ is clear from the context if

tr ρ = tr ρ ◦ τ.

Proposition 5.5. The functor assigning to an object A ∈ LCN(E) the set of strict
equivalence classes of self-dual crystalline deformations to GLn(A) is representable
by the quotient of R′

Σ by the ideal generated by {tr ρΣ(g) − tr ρΣ(τ(g)) | g ∈ GΣ}.
We will denote this quotient by RΣ and will write ρΣ for the corresponding universal
deformation.

We write Rred
Σ for the quotient of RΣ by its nilradical and ρredΣ for the corre-

sponding (universal) deformation, i.e., the composite of ρΣ with RΣ ։ Rred
Σ . We

will also write Ire ⊂ RΣ for the ideal of reducibility of tr ρΣ and I ′re ⊂ R′
Σ for the

ideal of reducibility of tr ρ′Σ, and finally Iredre for the ideal of reducibility of tr ρredΣ .
The results of Section 1 tell us:

Proposition 5.6. The ideal of reducibility Ire ⊂ RΣ (resp. Iredre ⊂ Rred
Σ ) of tr ρΣ

(resp. tr ρredΣ ) is principal.

6. Upper-triangular deformations of ρ0

In this section we study deformations of ρ0 to complete local rings whose trace
splits as a sum of two pseudocharacters.
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6.1. No infinitesimal upper-triangular deformations.

Definition 6.1. We will say that a crystalline deformation is upper-triangular if
some member of its strict equivalence class has the form

ρ(g) =

[

A1(g) B(g)
0 A2(g)

]

for all g ∈ GΣ

with Ai(g) an ni × ni-matrix.

Proposition 6.2. Under Assumption 5.1 (1) and (2) there does not exist any
non-trivial upper-triangular crystalline deformation of ρ0 to GLn(F[x]/x

2).

Proof. Let ρ′ =

[

ρ′1 ∗
ρ′2

]

be such a deformation. By Assumption 5.1 (2), we have

that ρ′i is strictly equivalent to ρi for i = 1, 2. By conjugating it by an upper-
block-diagonal matrix with entries in F and identity matrices in the blocks on the
diagonal we may assume that ρ′i = ρi. Assume ∗ = f + xg. In the basis

[

1
0

]

,

[

0
1

]

,

[

x
0

]

,

[

0
x

]

,

the representation ρ′ has the following form

ρ′ =









ρ1 f
ρ2
g ρ1 f

ρ2









.

Hence it has a subquotient isomorphic to

τ :=

[

ρ1 g
ρ2

]

.

Note that τ as a subquotient of a crystalline representation is still crystalline, thus
g gives rise to an element in H1

Σ(F,HomF(ρ2, ρ1)). If g is the trivial class, then
we get ρ′ ∼= ρ0 as claimed, so assume that g is non-trivial. Then we must have
τ ∼= ρ0 by Assumption 5.1(1). Hence there exists Y := [ A B

C D ] ∈ GL2(F) such that
Y ρ0 = τY . Using the fact that ρ1, ρ2 are irreducible and non-isomorphic an easy
calculation shows that a = A, d = D must be scalars, C = 0 and that

g = d−1(af +Bρ2 − ρ1B).

Set

Z =

[

1 −d−1Bx
1 + a

dx

]

∈ GL2(F[x]/x
2).

Then one checks easily that
Zρ′ = ρ0Z,

hence we are done. �

6.2. Study of upper-triangular deformations to cyclic O-modules. The fol-
lowing lemma is immediate.

Lemma 6.3. Assume Assumption 5.1 (2). Let R ∈ LCN(E). Then (up to strict
equivalence) any crystalline uppertriangular deformation ρ of ρ0 to R must have
the form

ρ =

[

ρ1,R ∗
ρ2,R

]

,
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where ρi,R stands for the composite of ρ̃i with the O-algebra structure map O → R.

Proof. This follows immediately from Assumption 5.1 (2). �

Put W = HomO(ρ̃2, ρ̃1)⊗ E/O and Wn = {x ∈W : ̟nx = 0}.

Theorem 6.4. Suppose there exists a positive integer m such that

#H1
Σ(F,W ) ≤ #O/̟m.

Then ρ0 does not admit any upper-triangular crystalline deformations to GLn(O/̟
m+1).

Proof. Let ρm+1 be such a block-uppertriangular deformation. By Lemma 6.3 ρm+1

must have the form

ρm+1 =

[

ρ̃1 mod ̟m+1 b
ρ̃2 mod ̟m+1

]

.

Since ρm+1 is crystalline it gives rise to an element E in H1
Σ(F,Wm+1). We claim

that E /∈ H1
Σ(F,Wm+1)[̟

m]. Consider the following diagram:

(Wm+1/W1)
GΣ

��

H1(FΣ,Wm+1) //

̟m

((QQQQQQQQQQQQQ
H1(FΣ,W1)

��

H1(FΣ,Wm+1)

The vertical sequence is induced from the exact sequence 0 → W1 → Wm+1 →

Wm+1/W1 → 0, the horizontal from 0→ Wm →Wm+1
̟m

→ W1 → 0.
Note that Wn

∼= T/̟n by x 7→ ̟nx. This isomorphism is GΣ-equivariant since
the action is O-linear. This implies that W2/W1

∼= T/̟T ∼= W1 as GΣ-modules.
By our assumption that ρ1 and ρ2 are irreducible and non-isomorphic we know that
Hom(ρ2, ρ1)

GΣ = 0, so we get

WGΣ
1 = (W2/W1)

GΣ = 0.

Note that (Wm+1/W1)
GΣ = 0 follows from (W2/W1)

GΣ = 0 sinceWm+1 surjects
onto W2 under multiplication by ̟m−1. Therefore, if ̟mE = 0 then E would have
to lie in the kernel of the horizontal map. This map corresponds, however, under
the isomorphism of Wk

∼= T/̟kT , to the morphism

H1(FΣ, T/̟
m+1T )

mod ̟
→ H1(FΣ, T/̟T ).

Hence the image of E under the horizontal map corresponds to the non-split exten-
sion given by ρ0. This proves the claim.

By the structure theorem of finitely generated modules over the PID O, the mod-
ule H1

Σ(F,Wm+1) must be isomorphic to a direct sum of modules of the form O/̟r.
Since E /∈ H1

Σ(F,Wm+1)[̟
m], the module H1

Σ(F,Wm+1) must have a submodule

isomorphic to O/̟m+1. We claim that WGΣ
1 = 0 also implies H0(FΣ,W ) = 0.

For this consider a ∈ WGΣ . If a 6= 0, then there exists n such that ̟na = 0
but ̟n−1a 6= 0. Since the GΣ-action is O-linear, a̟n−1 lies in WG

1 = 0, so
a = 0, which proves the claim. By the claim and Proposition 4.8, H1

Σ(F,Wm+1) =
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H1
Σ(F,W )[̟m+1]. By our assumption on the bound on #H1

Σ(F,W ) this contradicts
the existence of ρm+1. �

Remark 6.5. The existence of an m as in Theorem 6.4 follows essentially from
(the ̟-part of) the Bloch-Kato conjecture for the module HomO(ρ̃2, ρ̃1) and its
value should equal the ̟-adic valuation of a special L-value associated with this
module divided by an appropriate period. See also section 5.1 to see how one can
deal with primes v ∈ Σ \ Σp.

6.3. Cyclicity of RΣ/Ire.

Theorem 6.6. Let R be a local complete Noetherian O-algebra with residue field F.
If T : R[GΣ]→ R is a pseudocharacter such that T is the trace of a d-dimensional
absolutely irreducible representation, then there exists a unique (up to isomorphism)
representation ρT : GΣ → GLd(R) such that tr ρT = T .

Proof. This is Theorem 2.18 in [Hid00]. �

Theorem 6.7. Let (R,mR,F) be a local Artinian (or complete Hausdorff) ring.
Let σ1, σ2, and σ be three representations of a topological group G with coefficients
in R (with σ having image in GLn(R)). Assume the following are true:

• σ and σ1 ⊕ σ2 have the same characteristic polynomials;
• The mod mR-reductions σ1 and σ2 of σ1 and σ2 respectively are absolutely
irreducible and non-isomorphic;
• The mod mR-reduction σ of σ is indecomposable and the subrepresentation
of σ is isomorphic to σ1.

Then there exists g ∈ GLn(R) such that

σ(h) = g

[

σ1(h) ∗
σ2(h)

]

g−1

for all h ∈ G.

Proof. This is Theorem 1 in [Urb99]. �

Corollary 6.8. Let I ⊂ R′
Σ be an ideal such that R′

Σ/I ∈ LCN(E) and is an Artin
ring. Then I contains the ideal of reducibility of R′

Σ if and only if ρ′Σ mod I is an
upper-triangular deformation of ρ0 to GLn(R

′
Σ/I).

Proof. If ρ′Σ mod I is isomorphic to an upper-triangular deformation of ρ0 to
GLn(R

′
Σ/I), then clearly tr ρ′Σ mod I is the sum of two traces reducing to tr ρ1 +

tr ρ2, so I contains the ideal of reducibility. We will now prove the converse. Sup-
pose I contains the ideal of reducibility. Then by definition tr ρ′Σ = T1 + T2 mod

I for two pseudocharacters T1, T2 such that T i = tr ρi. Since ρi are absolutely
irreducible it follows from Theorem 6.6 that there exist ρTi

: R′
Σ/I[GΣ] → R′

Σ/I
such that Ti = tr ρTi

mod I. By [BC09], section 1.2.3 and the fact that p ∤ n! one
has

tr ρ′Σ (mod I) = tr ρT1 + tr ρT2 = tr (ρT1 ⊕ ρT2) =⇒ χρ′Σ mod I = χρT1⊕ρT2
,

where χ stands for the characteristic polynomial. By the Brauer-Nesbitt Theorem
(or Theorem 6.6 for R = F) we conclude that ρTi

∼= ρi, so we can apply Theorem
6.7 to get that ρ′Σ mod I is isomorphic to a block-upper-triangular representation,
say σ. Using the fact that the map (R′

Σ)
× → (R′

Σ/I)
× is surjective we see that
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we can further conjugate σ (over R′
Σ/I) to a block-upper-triangular deformation of

ρ0. �

Lemma 6.9. If R is a local complete Noetherian O-algebra then it is a quotient of
O[[X1, X2, . . . , Xs]].

Proof. This is Theorem 7.16a,b of [Eis95]. �

Proposition 6.10. Assume Assumption 5.1 (1), (2). Then the structure map
O → R′

Σ,O/I
′
re is surjective.

Before we prove the proposition we will show that it implies the corresponding
statement for Ire and Iredre .

Lemma 6.11. Let

A
ϕ

// //

�� ��
??

??
??

? B

����~~
~~

~~
~

F

,

be a commutative diagram of commutative A-algebras. Define TB via the commu-
tative diagram

A[G]
T

//

ϕ

��

A

ϕ

��

B[G]
TB

// B

.

Then ϕ induces a surjection
A/IT ։ B/ITB

.

Proof. It is enough to show that ϕ(IT ) ⊂ ITB
. Indeed, assuming this, ϕ induces

a well-defined map A/IT → B/ITB
, which must be a surjection since ϕ is. Since

A/ϕ−1(ITB
) ∼= B/ITB

, we see that T modulo ϕ−1(ITB
) is a sum of pseudocharac-

ters, hence ϕ−1(ITB
) ⊃ IT . Since ϕ is a surjection it follows that ITB

⊃ ϕ(IT ). �

Corollary 6.12. Assume Assumption 5.1 (1), (2). Then the structure maps O →
RΣ/Ire and O → Rred

Σ /Iredre are surjective.

Proof. This follows immediately from Proposition 6.10 and Lemma 6.11 where A =
R′

Σ, B = RΣ or B = Rred
Σ . �

Proof of Proposition 6.10. Write S for R′
Σ/I

′
re. Then S is a local complete ring.

Moreover, by Lemma 6.9 we have that S is a quotient of O[[X1, . . . , Xs]], and hence
R′

Σ/̟R
′
Σ (and thus S/̟S) is a quotient of F[[X1, . . . , Xs]]. We first claim that in

fact S/̟S = F. Indeed, assume otherwise, i.e., that S/̟S = F[[X1, . . . , Xs]]/J
and s > 0, then S/̟S admits a surjection, say φ onto F[X ]/X2, i.e., there are
at least two distinct elements of HomO−alg(R

′
Σ,F[X ]/X2) - the map R′

Σ ։ F →֒
F[X ]/X2 and the surjection R′

Σ ։ F[X ]/X2 arising from φ. By the definition
of R′

Σ there is a one-to-one correspondence between the deformations to F[X ]/X2

and elements of HomO−alg(R
′
Σ,F[X ]/X2). The trivial element corresponds to the

trivial deformation to F[X ]/X2, i.e., with image contained in GL2(F), which is
clearly upper-triangular. However, the deformation corresponding to the surjection
must also be upper-triangular by Corollary 6.8 since ker(R′

Σ ։ S/̟S ։ F[X ]/X2)
contains I ′re and F[X ]/X2 is Artinian. But we know by Proposition 6.2 that ρ0 does
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not admit any non-trivial crystalline upper-triangular deformations to F[X ]/X2.
Hence we arrive at a contradiction. So, it must be the case that S/̟S = F.

Thus by the complete version of Nakayama’s Lemma ([Eis95], Exercise 7.2) we
know that S is generated (as a O-module) by one element. �

Proposition 6.13. The ring R′
Σ is topologically generated as an O-algebra by the

set

S := {tr ρ′Σ(Frobv) | v 6∈ Σ}.

Proof. Let Rtr
Σ be the closed (and hence complete by [Mat89] Theorem 8.1) O-

subalgebra of R′
Σ generated by the set S. Let Itr0 be the smallest closed ideal of Rtr

Σ

containing the set

T := {tr ρ′Σ(Frobv)− tr ρ̃1(Frobv)− tr ρ̃2(Frobv) | v 6∈ Σ}.

Note that tr ρ′Σ(Frobv) − tr ρ̃1(Frobv) − tr ρ̃2(Frobv) ≡ 0 (mod ̟) for v 6∈ Σ, so
Itr0 6= Rtr

Σ . Also note that I0 := Itr0 R
′
Σ is the smallest closed ideal of R′

Σ containing
T . We will now show that I0 = I ′re. Indeed, by the Chebotarev density theorem we
get tr ρ′Σ = tr ρ̃1 + tr ρ̃2 (mod I0), hence I0 ⊃ I

′
re. On the other hand since R′

Σ/I
′
re

is complete Hausdorff, we can apply Corollary 6.8 to the ideal I ′re to conclude that
ρ′Σ (mod I ′re) is an upper-triangular deformation of ρ0 and thus by Lemma 6.3 we
must have tr ρ′Σ = tr ρ̃1 + tr ρ̃2 (mod I ′re). It follows that I0 ⊂ I

′
re.

Note that since tr ρ̃i is O-valued, the O-algebra structure map O → Rtr
Σ/I

tr
0 is

surjective, hence Rtr
Σ/(I

tr
0 +̟Rtr

Σ) = F. Thus in particular mtr := Itr0 +̟Rtr
Σ is the

maximal ideal of Rtr
Σ . Moreover, the containment

(6.1) Rtr
Σ →֒ R′

Σ

gives rise to an O-algebra map

(6.2) Rtr
Σ/I

tr
0 → R′

Σ/I0,

which must be surjective since the object on the right equals R′
Σ/I

′
re by the above

argument and R′
Σ/I

′
re is generated by 1 as an O-algebra by Proposition 6.10. This

map descends to

F = Rtr
Σ/m

tr → R′
Σ/m

trR′
Σ = R′

Σ/(I0 +̟Rtr
Σ) = R′

Σ/(I
′
re +̟Rtr

Σ) = F,

which is an isomorphism since (6.2) was surjective. Note that the maps (6.1) and
(6.2) are in fact Rtr

Σ -algebra maps and since Rtr
Σ is complete (which means complete

with respect to mtr) we can apply the complete version of Nakayama’s lemma to
conclude that Rtr

Σ = R′
Σ. �

Proposition 6.14. Assume Assumption 5.1 and#H1
Σ(F,HomO(ρ̃2, ρ̃1)) ≤ #O/̟m.

Then R′
Σ/I

′
re = O/̟

s for some 0 < s ≤ m. The same conclusion is true for RΣ/Ire
and for Rred

Σ /Iredre .

Proof. By Proposition 6.10 we have that R′
Σ/I

′
re = O/̟

s for some s ∈ Z+ ∪ {∞}.
But we must have 0 < r ≤ m, since by Corollary 6.8 if r > m or r = ∞, then
there would be an upper-triangular crystalline deformation of ρ0 to O/̟

m+1, which
is impossible by Theorem 6.4. The last assertion of the Proposition follows from
Lemma 6.11. �
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6.4. Some consequences of the principality of Ire. Below we list some conse-
quences of principality of Ire in our context.

Lemma 6.15. If R is a local complete Noetherian O-algebra and there exists r ∈ R
such that the structure map O → R/rR is surjective, then R is a quotient of O[[X ]].

Proof. Since R/(r,̟) = F, the ideal (r,̟) ⊂ R is maximal. Hence by Theorem
7.16 in [Eis95] there exists an O-algebra map Φ : O[[X,Y ]] ։ R sending X to r
and Y to ̟. But this map factors through Ψ : O[[X,Y ]] ։ O[[X ]] sending X to
X and Y to ̟ (indeed, kerΨ = (Y −̟)O[[X,Y ]] ⊂ kerΦ). �

Proposition 6.16. If Rred
Σ /Iredre 6= O, then R

red
Σ is Gorenstein.

Proof. First note that by Proposition 6.10 our assumption implies that Rred
Σ /Iredre

is finite. Thus by Corollary 3.5 the ideal Iredre is generated by a non-zero divisor.
Hence in particular the maximal ideal of Rred

Σ contains a non-zerodivisor. Thus we
can apply [Bas63], Proposition 6.4 to conclude that Rred

Σ is Gorenstein. �

Proposition 6.17. If Rred
Σ /Iredre 6= O, then R

red
Σ is a complete intersection.

Proof. By Lemma 6.15 we know that Rred
Σ = O[[X ]]/J . Note that codim(J) =

dimRred
Σ which because Iredre is principal equals (cf. e.g. [AM69], Corollary 11.18)

dimRred
Σ /Iredre +1 = 1 since RΣ/Ire is finite. It follows from [Eis95], Corollary 21.20

that Rred
Σ is a complete intersection. �

7. A commutative algebra criterion

Let R and S denote complete local Noetherian O-algebras with residue field F.
Suppose that S is a finitely generated free O-module.

Theorem 7.1. Suppose there exists a surjective O-algebra map φ : R ։ S inducing
identity on the residue fields and π ∈ R such that the following diagram

(7.1) R
φ

//

��

S

��

R/πR // S/φ(π)S

commutes. Write φn for the map φn : R/πnR ։ S/φ(π)nS. Assume#φ(π)S/φ(π)2S <
∞. Suppopse φ1 : R/πR։ S/φ(π)S is an isomorphism.

• If R/πR ∼= O/̟r for some positive integer r, then φ is an isomorphism.
• If R/πR ∼= O and the induced map πR/π2R ։ φ(π)S/φ(π)2S is an iso-
morphism, then φ is an isomorphism.

In the case when R/πR = O, Theorem 7.1 gives an alternative to the criterion
of Wiles and Lenstra to prove R = T . Let us briefly recall this criterion. Suppose
we have the following commutative diagram of surjective O-algebra maps

(7.2) R
φ

//

πR

��

S

πS
��~~

~~
~~

~

O

and for A = R or S set ΦA := (kerπA)/(kerπA)
2 and ηA = πA(AnnA kerπA).



ON DEFORMATION RINGS 21

Theorem 7.2 (Wiles and Lenstra). #ΦR ≤ #O/ηS if and only if φ is an isomor-
phism of complete intersections.

Proposition 7.3. Suppose diagram (7.2) commutes. Suppose that kerπR is a
principal ideal of R generated by some π ∈ R and suppose that #ΦR ≤ #O/ηS,
then φ is an isomorphism.

Proof. By our assumption we have

(7.3) #πR/π2R = #ΦR ≤ #O/ηS .

On the other hand the right-hand-side of (7.3) is bounded from above by #ΦS (see
e.g. formula (5.2.3) in [DDT97]). However, note that since φ is surjective it follows
that φ(ker πR) = kerπS , hence ΦS = φ(π)S/φ(π)2S. Hence we can apply Theorem
7.1 to conclude that φ is an ismorphism. �

Proof of Theorem 7.1. Consider the following commutative diagramwith exact rows.

(7.4) 0 // πR/πnR //

α

��

R/πnR //

β

��

R/πR //

φ1

��

0

0 // φ(π)S/φ(π)nS // S/φ(π)nS // S/φ(π)S // 0

We will show that R/πnR ∼= S/φ(π)nS for all n. By (7.4) and snake lemma it is
enough to show that α is an isomorphism for all n > 1.

Set x = φ(π). Note that α is clearly surjective, because φ is. On the other
hand, the multiplication by π (resp. by x) induces surjective maps: πk−1R/πkR։

πkR/πk+1R (resp. xk−1S/xkS ։ xkS/xk+1S). So, arguing as in the proof of
Proposition 6.9 in [BK11] we have #(πR/πkR) ≤ #(πR/π2R)k−1 and #(xS/xkR) =
#(xS/x2S)k−1 because by Lemma 6.7 of [BK11] we get that the multiplication by
x is injective on xS (apply this lemma for xS instead of S - note that xS being
a submodule of a finitely generated torsion free O-module is also finitely gener-
ated and torsion-free). If R/πR ∼= O, then πR/π2R ∼= xS/x2S by assumption. If
R/πR = O/̟rO for some positive integer r we deduce that πR/π2R ∼= xS/x2S as
in the proof of Proposition 6.9 in [loc.cit.] and (arguing inductively) in both cases
we finally obtain πR/πkR ∼= xS/xkS, which is what we wanted. So,

lim
←−
n

R/πnR ∼= lim
←−
n

S/xnS.

Now, consider the following commutative diagram with exact rows

0 // R
ι

//

φ

��

lim
←−
n

R/πnR //

φ∼

��

coker ι

��

// 0

0 // S
ι′
// lim←−
n

S/φ(π)nS // coker ι′ // 0

where the maps ι and ι′ are injective because R (resp. S) are separated (with
respect to the maximal ideals hence with respect to any non-unit ideals). The first
vertical map is surjective and the second is an isomorphism, hence by snake lemma
the first vertical map is an isomorphism as well. �
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8. R = T theorems

Fix a (semi-simple) p-adic Galois representation ρπ0 : GF → GLn(E) which
factors through GΣ and satisfies:

(8.1) ρssπ0
∼= ρ1 ⊕ ρ2.

Proposition 8.1. If ρπ0 is irreducible then there exists a lattice L inside En so
that with respect to that lattice the mod ̟ reduction ρπ0

of ρπ0 has the form

ρπ0
=

[

ρ1 ∗
0 ρ2

]

and is non-semi-simple.

Proof. This is a special case of [Urb01], Theorem 1.1, where the ring B in [loc.cit.]
is a discrete valuation ring = O. �

Set

ρ0 := ρπ0
.

Let Π be the set of Galois representations ρπ : GΣ → GLn(E) (with ρπ semi-
simple but not necessarily irreducible) for which there exists a crystalline deforma-
tion ρ′π : GΣ → GLn(O) of ρ0 such that one has

(ρ′π)
ss ∼=/E ρπ.

Remark 8.2. Our choice of notation is motivated by potential applications of
these results. In applications ρπ0 will be the Galois representation attached to
some automorphic representation π0 and Π will be (in one-to-one correspondence
with) the subset of (L-packets of) automorphic representations π whose associated
Galois representation ρπ satisfies the above condition.

Proposition 8.3. Assume Assumption 5.1(1). If ρ : GΣ → GLn(E) is irreducible
and crystalline and ρss = ρss0 , then ρ ∈ Π.

Proof. By Proposition 8.1 ρ is E-isomorphic to a representation ρ′ : GΣ → GLn(O)
with ρ′ upper-triangular and non-semi-simple. Since ρ′ is crystalline its reduction
gives rise to a non-zero element inside H1

Σ(F,HomF(ρ2, ρ1)) and by Assumption
5.1(1) this group is one-dimensional. �

Remark 8.4. In contrast to Proposition 8.3 if ρ is reducible (and by assumption
semi-simple) it is not always the case that ρ ∈ Π. For example Skinner and Wiles in
[SW99] studied a minimal (ordinary) deformation problem for residually reducible
2-dimensional Galois representations. In [loc.cit] they assert the existence of an
upper-triangular Σ-minimal deformation ρ′ of ρ0 to GL2(O) based on arguments
from Kummer theory. The semi-simplification of this deformation is the Galois
representation ρE2,ϕ associated to a certain Eisenstein series E2,ϕ (see page 10523
in [loc.cit.] for a definition of E2,ϕ), hence we take ρ′E2,ϕ

= ρ′. The difficulty is

in showing the existence of a representation whose semi-simplification agrees with
ρE2,ϕ , but which reduces to ρ0 hence is non-semi-simple (this is where the Kummer
theory is used). In contrast to the case considered in [SW99], the authors showed
that in the case of 2-dimensional Galois representations over an imaginary qua-
dratic field F there is no upper-triangular Σ-minimal deformation of ρ0 to GL2(O)
([BK09], Corollary 5.22). So, in particular if one considers an Eisenstein series (say
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E) over F then there is no representation ρ′E whose semi-simplification is isomorphic
to ρE and for which one has ρ′E = ρ0 and at the same time ρ′E is minimal.

Let Π be as above. Then one obtains an O-algebra map

RΣ →
∏

ρπ∈Π

O.

We (suggestively) write TΣ for the image of this map and denote the resulting
surjective O-algebra map RΣ ։ TΣ by φ.

Theorem 8.5. Suppose the set Π is finite. Assume Assumption 5.1 (1) and (2).
Suppose there exists an anti-automorphism τ of RΣ[GΣ] such that tr ρΣ ◦ τ = tr ρΣ
and tr ρi ◦ τ = tr ρi for i = 1, 2. In addition suppose that there exists a positive
integer m such that the following two “numerical” conditions are satisfied:

(1) #H1
Σ(F,HomO(ρ̃2, ρ̃1) ≤ #O/̟m,

(2) #TΣ/φ(Ire) ≥ #O/̟m.

Then the map φ : RΣ ։ TΣ is an isomorphism.

Proof. This is just a summary of our arguments so far. The existence of τ guar-
antees principality of the ideal of reducibility Ire. Condition (1) in Theorem 8.5
implies (by Proposition 6.14) that #RΣ/Ire = O/̟

s for 0 < s ≤ m. This combined
with condition (2) guarantees that φ descends to an isomorphism φ1 : RΣ/Ire →
TΣ/φ(Ire). Hence by Theorem 7.1(1) we conclude that φ is an isomorphism. �

Theorem 8.6. Suppose the set Π is finite. Assume Assumption 5.1. Suppose
there exists an anti-automorphism τ of RΣ[GΣ] such that tr ρΣ ◦ τ = tr ρΣ and
tr ρi ◦ τ = tr ρi for i = 1, 2. In addition suppose that

(1) TΣ/φ(Ire) = O,
(2) #Ire/(Ire)

2 ≤ #(φ(Ire)TΣ)/(φ(Ire)TΣ)
2.

Then the map φ : RΣ ։ TΣ is an isomorphism.

Proof. This is proved analogously to Theorem 8.6 but uses Theorem 7.1(2). Note
that Corollary 6.12 combined with condition (1) of Theorem 8.6 yields RΣ/Ire =
TΣ/φ(Ire) = O, hence the map φ1 in Theorem 7.1 is an isomorphism. �

Remark 8.7. In applying Theorems 8.5 and 8.6 in practice one identifies TΣ with
a local complete Hecke algebra. Then condition (2) may be a consequence of a lower
bound on the order of TΣ/J , where J could be the relevant congruence ideal (e.g.,
Eisenstein ideal - see section 9 or Yoshida ideal - see section 10). See for example
[BK09] and [BK11], where such a condition (which is a consequence of a result
proved in [Ber09]) is applied in the context of Theorem 8.5. On the other hand in
[SW99] one shows that the condition needed to apply the criterion of Wiles and
Lenstra is satisfied and this implies (cf. Proposition 7.3 and its proof) that condition
(2) in Theorem 8.6 is satisfied. On the other hand condition (1) of Theorem 8.5
seems to require (the ̟-part of) the Bloch-Kato conjecture for HomO(ρ̃2, ρ̃1) and
is in most cases when ρ1 and ρ2 are not characters currently out of reach. Hence
in this case Theorem 8.5 should be viewed as a statement asserting that under
certain assumptions, (the ̟-part of) the Bloch-Kato conjecture for HomO(ρ̃2, ρ̃1)
(which in principle controls extensions of ρ̃2 by ρ̃1 hence reducible deformations of
ρ0) implies an R = T -theorem (which asserts modularity of both the reducible and
the irreducible deformations of ρ0).
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Remark 8.8. If an anti-automorphism τ in Theorems 8.5 and 8.6 does not exist,
but instead one has

dimFH
1(GΣ,HomF(ρ1, ρ2)) = dimFH

1(GΣ,HomF(ρ2, ρ1)) = 1,

then the conclusions of Theorems 8.5 and 8.6 still hold by Remark 2.12.

9. 2-dimensional Galois representations of an imaginary quadratic

field - the crystalline case

In this and in the next section we will describe how the method outlined in the
preceding sections can be applied in concrete situations. We begin with the case
when F is an imaginary quadratic field, ρ1 and ρ2 are characters. This is similar to
the problem studied in [BK11], but covers the case of crystalline deformations (as
opposed to ordinary minimal deformations considered in [loc.cit.]). Because of this
similarity with [BK11], we will discuss only the aspects in which this case differs
from the ordinary case and will refer the reader to [BK09] and [BK11] for most
details and definitions. In the next section we will study another case, this time
when the representations ρ1 and ρ2 are 2-dimensional and will consider an R = T
problem for residually reducible 4-dimensional Galois representations of GQ.

9.1. The setup. Let F be an imaginary quadratic extension of Q of discriminant
dF 6= 3, 4 and p > 3 a rational prime which is unramified in F . We fix once and for
all a prime p of F lying over (p). As before, we fix for every prime q embeddings
F →֒ F q →֒ C and write Dq and Iq for the corresponding decomposition and inertia
subgroups. We assume that p ∤ #ClF and that any prime q | dF satisfies q 6≡ ±1
(mod p).

Let Σ be a finite set of finite primes of F containing all the primes lying over p.
Let χ0 : GΣ → F× be a Galois character and

ρ0 =

[

1 ∗
χ0

]

: GΣ → GL2(F)

be a non-semi-simple Galois representation.

9.2. Assumption 5.1. We will now describe sufficient conditions under which As-
sumption 5.1 is satisfied.

Let Sp be the set of primes of F (χ0) lying over p. Write Mχ0 for
∏

q∈Sp
(1+Pv)

and Tχ0 for its torsion submodule. The quotient Mχ0/Tχ0 is a free Zp-module of

finite rank. Let Eχ0 be the closure in Mχ0/Tχ0 of the image of Eχ0 , the group of
units of the ring of integers of F (χ0) which are congruent to 1 modulo every prime
in Sp.

Definition 9.1. We say that χ0 : GΣ → F× is Σ-admissible if it satisfies all of the
following conditions:

(1) χ0 is ramified at p;
(2) if q ∈ Σ, then either χ0 is ramified at q or χ0(Frobq) 6= (#kq)

±1 (as elements
of F);

(3) if q ∈ Σ, then #kq 6≡ 1 (mod p);
(4) χ0 is anticyclotomic, i.e., χ0(cσc) = χ0(σ)

−1 for every σ ∈ GΣ and c the
generator of Gal(F/Q);

(5) the Zp-submodule Eχ0 ⊂ Mχ0/Tχ0 is saturated with respect to the ideal
pZp,
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(6) The χ−1
0 -eigenspace of the p-part of ClF (χ0) is trivial.

Remark 9.2. Note that χ0 is Σ-admissible if and only if χ−1
0 is (cf. Remark 3.3

in [BK09]).

9.2.1. Assumption 5.1(1). Set G = Gal(F (χ0)/F ). Let L denote the maximal
abelian extension of F (χ0) unramified outside the set Σ and such that p annihilates
Gal(L/F (χ0)). Then V := Gal(L/F (χ0)) is an Fp-vector space endowed with an
Fp-linear action of G, and one has

V ⊗Fp
Fp ∼=

⊕

ϕ∈Hom(G,F
×

p )

V ϕ,

where for a Zp[G]-module N and an Fp-valued character ϕ of G, we write

(9.1) Nϕ = {n ∈ N ⊗Zp
Fp | σn = ϕ(σ)n for every σ ∈ G}.

Note that V0 ⊗Fp
Fp is a direct summand of V χ

−1
0 .

Proposition 9.3. One has dim
Fp
V χ

−1
0 = 1.

Proof. If p is a split prime this assertion has been proved in [BK09] (see Theorem
3.5). For an inert p the proof is essentially the same, so let us just point out how
to reconcile some of the issues that arise in the inert case (for notation we refer
the reader to the proof of Thereom 3.5 in [loc.cit]). In particular as opposed to the
split case, in the inert case one gets that for every ψ ∈ G∨,

dimFp
(M/T )ψ = 2.

For this one can argue as follows: Since the ramification index of p in F (χ0) is
no greater than p2 − 1, the p-adic logarithm gives a Dv-equivariant isomorphism
Pp+2
v
∼= 1+Pp+2

v for every v | p. This followed by the injection 1+Pp+2
v →֒ 1+Pv

yields an isomorphism of G-modules
⊕

v|pP
p+2
v ⊗ Qp

∼= (M/T ) ⊗ Qp. It is not

difficult to see that
∏

q∈Sp

Pp+2
v ⊗Qp

∼=
⊕

φ∈Gal(F (χ0)/Q)∨

Qp(φ)
∼=

⊕

φ∈G∨

Qp(φ)⊕Qp(φ),

whereQp(φ) denotes the one-dimensionalQp-vector space on whichG (or Gal(F (χ0)/Q))
acts via φ. The claim follows easily from this. However, since we now only have
one prime of F lying over p, this still gives us (as in the split case) that

((M/T )⊗ Fp)/(E ⊗ Fp) ∼= Fp(1)⊕ Fp(1)⊕
⊕

ψ∈G∨\{1}

Fp(ψ).

Since χ0 6= 1 we are done. �

As in the proof of Corollary 3.7 in [BK09] Proposition 9.3 implies that the space
H1(GΣ,Fp(χ

−1
0 )) is one-dimensional and hence we obtain the following corollary

(note that ρ0 itself is crystalline, so the extension it gives rise to lies in the Selmer
group).

Corollary 9.4. The pair (1, χ0) for a Σ-admissible character χ0 satisfies Assump-
tion 5.1(1).
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9.2.2. Assumption 5.1(2). Write ρi for the character 1 or χ0.

Proposition 9.5. There does not exist any non-trivial crystalline deformation of
ρi to GL1(F[x]/x

2).

Proof. Let ρ : GΣ → GL1(F[x]/x
2) be a crystalline deformation of ρi. Then since

ρ−1
i is also crystalline we can without loss of generality assume that ρ has the form
ρ = 1+xα for α : GΣ → F+ a group homomorphism (here F+ denotes the additive
group of F).

Let q be a prime of F and consider the restriction of α to Iq. If q ∈ Σ, q ∤ p then
#kv 6≡ 1 mod p by Definition 9.1(3), and thus one must have (by local class field
theory) that α(Iq) = 0. Thus α can only be ramified at the primes lying over p.
The proposition thus follows easily from the following lemma and the assumption
that p ∤ #ClF . �

Lemma 9.6. A p-power order crystalline character ψ : GΣ → (F[x]/x2)× must be
unramified at primes lying above p.

Proof. Since a character as above can be thought of as a 2-dimensional representa-
tion ρ : GΣ → GL2(F) of the form

ρ(σ) =

[

1 0
α 1

]

,

it is enough to show that for q lying over p a crystalline extension of the trivial
one-dimensional F-representation of GFq

by itself must be unramified at primes
lying over p. However, such an extension is necessarily split by Remark 6.13, p.589
of [FL82]. �

Corollary 9.7. The pair (1, χ0) for a Σ-admissible character χ0 satisfies Assump-
tion 5.1(2).

9.3. Bounding the Selmer group. From now on we will make a particular choice
of χ0 and Σ. Let φ1, φ2 be two Hecke characters of infinity types z and z−1 respec-
tively, and set φ = φ1/φ2. Let φp denote the p-adic Galois character corresponding

to φ. Set Ψ := φpǫ and χ0 = Ψ. Assume that Σ contains all the primes dividing
M1M2M

c
1M

c
2discF p, where Mi denotes the conductor of φi.

Let Lint(0, φ) be the special L-value attached to φ as in [BK09]. Write W for
HomO(Ψ, 1)⊗ E/O.

Conjecture 9.8. #H1
f (F,W ) ≤ #O/̟m, where m = val̟(L

int(0, φ)).

Remark 9.9. Conjecture 9.8 can in many cases be deduced from the Main conjec-
ture proven by Rubin [Rub91]. If φ−1 = ψ2 for ψ a Hecke character associated to a
CM elliptic curve, then one can argue as follows. By Proposition 4.4.3 in [Dee99] and
using that H1

f (F,W ) ∼= H1
f (F,W

c), we have #H1
f (F,W ) = #H1

f (F,E/O(φ
−1
p )).

Thus we can use Corollary 4.3.4 in [Dee99] which together with the functional
equation satisfied by L(0, φ) implies the desired inequality.

Corollary 9.10. Assume that χ0 is Σ-admissible and that Conjecture 9.8 holds for
φ. Then #H1

Σ(F,W ) ≤ #O/̟m, where m = val̟(L
int(0, φ)).

Proof. Let v ∈ Σ\Σp. First note that since Ψ isO×-valued one must haveW Iv =W
or W Iv = 0. So, in particular W Iv is divisible. Hence by Remark 4.7, we get that
Tam0

v(T
∗) = 1, so by Lemma 4.6 it is enough to show that Pv(V

∗, 1) ∈ O×. Let
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Σun be the subset of Σ \Σp consisting of those primes v for which χ0 is unramified.
If v 6∈ Σun, then this Euler factor is 1. Otherwise one has

Pv(V
∗, 1)−1 = 1−Ψǫ(Frobv) ≡ 1− χ0(Frobv) ·#kv (mod ̟).

Because χ0 is Σ-admissible (cf. Definition 9.1(2)) we are done by Conjecture 9.8.
�

From now on assume that χ0 is Σ-admissible and that Conjecture 9.8 holds for
φ. Let RΣ denote the crystalline universal deformation ring of ρ0 and Ire its ideal
of reducibility.

Corollary 9.11. One has RΣ/Ire = O/̟
s for some 0 < s ≤ m, with m as above.

Proof. This follows from Conjecture 9.8 and Proposition 6.14. �

Remark 9.12. Note that this proof of Corollary 9.11 differs from (and is simpler
than) the proof of Theorem 5.12 in [BK09] in that we do not need to relate the
Selmer groups to Galois groups. This is so because the proof of Theorem 6.4
interprets (which is perhaps more natural) upper-triangular deformations directly
as cohomology classes in the Selmer group.

9.4. Modularity of crystalline residually reducible 2-dimensional Galois

representations over F .

Remark 9.13. By Remark 9.2 and Corollary 9.4 one also has dimFH
1(GΣ,Fp(χ0)) =

1, hence by Remark 2.12, the ideal of reducibility Ire ⊂ RΣ is principal.

From now on assume that φ is unramified or that we are in the situation of
Theorem 4.4 of [BK09]. Let TΣ denote the Hecke algebra defined in section 4 of
[BK09], except we do not restrict to the ordinary part. Conjecture 5 of [Ber09]
asserted that the Galois representation ρπ attached to an automorphic represen-
tation π over F is crystalline if π is unramified at p. This has now been proven
in many cases by A. Jorza [Jor10]. When it is satisfied we obtain by universality
a canonical map ψ : RΣ ։ TΣ and the set Π in section 8 can be identified with
the set ΠΣ from section 4.2 of [BK09]. By Theorem 14 of [Ber09] condition (2) of
Theorem 8.5 is satisfied with m as in Conjecture 9.8. Hence gathering all this, we
can apply Theorem 8.5 (using Remark 9.13 instead of the existence of τ) to deduce
the following modularity result.

Theorem 9.14. The map ψ : RΣ ։ TΣ is an isomorphism.

From this one easily has the following modularity theorem.

Theorem 9.15. Let F , p and Σ be as above. Let φ be an unramified Hecke char-
acter of infinity type z2 and let χ0 = φpǫ. Assume χ0 is Σ-minimal and that
Conjecture 9.8 holds φ. Let ρ : GΣ → GL2(E) be an irreducible continuous Galois
representation and suppose that ρss ∼= 1⊕ χ0. If ρ is crystalline at the primes of F
lying over p then (a twist of) ρ is modular.

10. 4-dimensional Galois representations of Q - Yoshida lifts

In this section we apply our methods to study the deformation ring of a 4-
dimensional residually reducible Galois representation of GQ.
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10.1. Setup. Let Sn(N) denote the space of (elliptic) cusp forms of weight n and
level N . Assume that p > k ≥ 4 is even and that N is a square-free positive
integer with p ∤ N . We will also assume that all primes l | N satisfy l 6≡ 1 (mod
p). Let f ∈ S2(N) and g ∈ Sk(N) be two eigenforms whose residual (mod p)
Galois representations are absolutely irreducible and mutually non-isomorphic. For
a positive integer n write SSn (N) for the space of Siegel modular forms φ which are
cuspidal and satisfy

det(CZ+D)−nφ((AZ+B)(CZ+D)−1) = φ(Z) for

[

A B
C D

]

∈ Sp4(Z);C ≡ 0 (mod N).

Here Z is in the Siegel upper-half space.

Theorem 10.1 (Yoshida). There exists a C-linear map

Y : S2(N)⊗ Sk(N)→ SSk/2+1(N)

such that
Lspin(s, Y (f ⊗ g)) = L(s− k/2 + 1, f)L(s, g)

up to the Euler factors at the primes dividing N . In particular the lift Y (f ⊗ g) is
a Hecke eigenform for primes away from N .

Let Σ denote the finite set of finite places of Q consisting of p and the primes
dividing N . For a Siegel cuspidal eigenform φ (away from Σ) denote by ρφ : GΣ →
GL4(E) the Galois representation attached to φ by Weissauer [Wei05] and Laumon
[Lau05]. The representations are crystalline at p by [FC90] Théorème VI.6.2. It
follows from Theorem 10.1 that

ρY (f⊗g)
∼= ρf (k/2− 1)⊕ ρg,

where ρf and ρg denote the Galois representations attached to f and g by Eich-
ler, Shimura and Deligne. Note that because the determinants of the two two-
dimensional summands match, the image of ρY (f⊗g) is contained (possibly after

conjugating) in GSp4(O) and not just in GL4(O). Let SnY denote the orthogonal
complement (under the standard Petersson inner product on SSk/2+1(N)) of the im-

age of the map Y and let Sf,g ⊂ SnY denote the subspace spanned by eigenforms
φ whose Galois representation satisfy the following two conditions:

• ρφ is irreducible;
• The semisimplification of the reduction mod ̟ (with respect to some lattice
in E4) of ρφ is isomorphic to ρf (k/2− 1)⊕ ρg.

Let TS denote the O-subalgebra of EndO(S
S
k/2+1(N)) generated by the local Hecke

algebras away from Σ, and let TΣ = Tf,g be the image of TS inside EndO(S
f,g).

Then (if non-zero) Tf,g is a local, complete Noetherian O-algebra with residue field
F which is finitely generated as a module over O. Let Ann(Y (f ⊗ g)) ⊂ TS denote
the annihilator of Y (f⊗g). It is a prime ideal and one has TS/Ann(Y (f⊗g)) ∼= O.
Let If,g = ψ(Ann(Y (f ⊗ g))), where ψ : TS

։ Tf,g is the projection map. It is an
ideal.

Conjecture 10.2. Suppose m = val̟(L
N,alg(1 + k/2, f × g)) > 0. Then

#Tf,g/If,g ≥ #O/̟m.

Here LN,alg(1 + k/2, f × g) denotes appropriately normalized special value of the
convolution L-function of f and g.



ON DEFORMATION RINGS 29

In a recent preprint Agarwal and the second author have proved this conjecture
in many cases (cf. [AK10], Theorem 6.5 and Corollary 6.10) under some additional
assumptions (among them that f and g are ordinary). See also [BDSP10] for a
similar result. As a consequence of this conjecture we get that Tf,g 6= 0 whenever
the L-value is not a unit. Also, the conjecture implies that the space Sf,g 6= 0. Let
F ∈ Sf,g 6= 0 be an eigenform. Then its Galois representation ρF : GΣ → GL4(E)
is irreducible, but the semi-simplification of its reduction mod ̟ has the form
ρssF
∼= ρf (k/2 − 1) ⊕ ρg. Using Proposition 8.1 we fix a lattice L ⊂ E4 such that

with respect to that lattice ρF is non-semi-simple and has the form

ρF =

[

ρf (k/2− 1) ∗
0 ρg

]

.

Set

ρ0 := ρF .

10.2. Assumption 5.1. In what follows we impose Assumption 5.1. Let us briefly
discuss some sufficient conditions under which Assumption 5.1 is satisfied. The
Selmer group in Part (1) is equal to H1

f (Q,HomO(ρ̃2, ρ̃1))⊗F as long as we assume
the conditions of Lemma 4.6. The condition on the Tamagawa factor is satisfied if
W Iv is divisible, where W = HomO(ρ̃2, ρ̃1)) ⊗ E/O. This is proven in [BDSP10]
Lemma 3.2(i) under the additional assumption that there does not exist a newform
h ∈ S2(N), h 6= f which is congruent (away from Σ) to f (mod ̟) and similarly
there does not exist a newform h ∈ Sk(N), h 6= g which is congruent (away from
Σ) to g (mod ̟). In what follows we assume that the local L-factors in Lemma 4.6
are p-adic units, and hence a necessary and sufficient condition for the Assumption
5.1(1) to be satisfied is that the Bloch-Kato Selmer group be cyclic (which, assuming
the relation to an L-value predicted by the Bloch-Kato conjecture, is guaranteed
for example when val̟(L

N,alg(1 + k/2, f × g)) = 1).
On the other hand one can also formulate some sufficient conditions under which

Assumption 5.1(2) is satisfied. We will only discuss the case of ρ2 = ρg, the case of
ρ1 being similar. Suppose that ρ : GΣ → GL2(O) is another crystalline lift of ρ2. In
particular ρ is semi-stable at p, hence the Fontaine-Mazur conjecture predicts that
it should be modular. This conjecture is true in many cases. In particular it is true
when ρ is unramified outside finitely primes, ramified at p and (short) crystalline,

with ρ|GQ(p)
absolutely irreducible and modular (here Q(p) = Q(

√

(−1)(p−1)/2p))

by a Theorem of Diamond, Flach and Guo ([DFG04], Theorem 0.3). In our case
ρ is ramified at p because det ρ is, so if we assume in addition that ρg|GQ(p)

is
absolutely irreducible, we can conclude that there exists a modular form h such
that ρ ∼= ρh. Since we assume (in accordance with Assumption 5.1 - see discussion
following that assumption) that Σ does not contain any primes congruent to 1 mod

p, we have H1
Σ(F, ad

0 ρ̃i ⊗E/O) = H1
Σ(F, ad ρ̃i ⊗E/O) as explained in section 5.1.

Hence we must have det ρh = det ρg, so h is necessarily of weight k. Since our
deformations are unramified outside Σ (and crystalline at p), the level of the form
h can only be divisible by the primes dividing N . In this case Assumption 5.1(2) is
equivalent to an assertion that there does not exist a newform h ∈ S2(N

2), h 6= f
which is congruent (away from Σ) to f (mod ̟) and similarly there does not exist
a newform h ∈ Sk(N

2), h 6= g which is congruent (away from Σ) to g (mod ̟).
Indeed, it follows from a result of Livne ([Liv89], Theorem 0.2) that under our
assumptions concerning the primes in Σ, the form f (resp. g) cannot be congruent
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to a form of level divisible by l3 for a prime l | N (note that N is square-free by
assumption). Alternatively one can use Theorem 1.5 in [Jar99] which works for all
totally real fields. So, Assumption 5.1(2) follows from just a slight strengthening
of the congruence conditions already imposed to satisfy Assumption 5.1(1).

Alternatively, the Selmer group H1
Σ(Q, ad ρi), i = 1, 2 could be related to a

symmetric-square L-value using the Bloch-Kato conjecture and Lemma 4.6 together
with Remark 4.7. For the divisibility of (W ∗)Iv forW = ad0 ρf⊗E/O we can argue
as follows, as explained to one of us by Neil Dummigan: Assume again that f is
not congruent (away from Σ) to another newform modulo ̟. Then with respect to
some basis x, y, both ρf and ρf send a generator of the p-part of the tame inertia

group at v to the matrix

(

1 1
0 1

)

. It follows that the Iv-fixed parts of both Sym2ρf

and Sym2ρf are two-dimensional, spanned by x2 and xy − yx. Hence the Iv-fixed

part of Sym2ρf ⊗ E/O is divisible. We observe that Sym2ρf differs from W ∗ just
by a Tate twist.

10.3. Deformations. From now on we assume that Assumptions 5.1(1) and (2)
hold, Σ = {l | N} ∪ {p}. Consider an anti-automorphism τ : GΣ → GΣ given by
τ(g) = ǫ(g)k−1g−1 (see Example 2.9(3)). Note that tr ρi ◦ τ = tr ρi for i = 1, 2. By
Remark 1 of [Wei05] we also know that for any Siegel modular form φ of parallel
weight k/2 + 1, the Galois representation ρφ (in particular, also ρ0) is essentially
self-dual with respect to τ as defined above, i.e. that ρ∗φ

∼= ρφǫ
1−k.

We study deformations ρ of ρ0 such that

• ρ is crystalline at p;
• tr ρ ◦ τ = tr ρ.

This deformation problem is represented by a universal couple (RΣ, ρΣ). By Propo-
sition 5.6 the ideal of reducibility Ire of RΣ is principal. Moreover since RΣ is gen-
erated by traces (Proposition 6.13), we get an O-algebra surjection φ : RΣ ։ Tf,g.
(Note that even though the Hecke operators are involved in all the coefficients of the
characteristic polynomial of the Frobenius elements, all of them can be expressed
by the trace.) The (̟-part of the) Bloch-Kato conjecture (together with Lemma
4.6 - see the discussion above) predicts that

(10.1) #H1
Σ(Q,HomO(ρg, ρf (k/2− 1))) ≤ #O/̟m

with m as above. At the moment this conjecture is beyond our reach. Moreover,
it is not clear that the periods used to define the algebraic L-value involved in the
Main Conjecture and the one defining LN,alg above coincide (something we have
assumed when writing (10.1)). If we assume (10.1) then Proposition 6.14 implies
that RΣ/Ire ∼= O/̟

s for s ≤ m. So the induced map RΣ/Ire ։ Tf,g/φ(Ire) =
Tf,g/If,g is an isomorphism. Thus by Theorem 8.5, we get that φ is an isomorphism.
In particular we have proved the following theorem:

Theorem 10.3. Let f , g and Ψ be as above and assume that Assumption 5.1 is
satisfied and that equation (10.1) as well as Conjecture 10.2 hold. Let ρ : GΣ →
GL4(E) be an irreducible Galois representation and suppose that

ρss = ρf (k/2− 1)⊕ ρg.

Moreover assume that ρ is crystalline. Then there exists F ′ ∈ SSk/2+1(N) such that

ρ ∼= ρF ′ ,
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i.e., ρ is modular.
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BC09. J. Belläıche and G. Chenevier, p-adic families of galois representations and higher

rank Selmer groups, Astérisque (2009), no. 324.
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67–150, Formes automorphes. II. Le cas du groupe GSp(4).
Wes00. T. Weston, On Selmer groups of geometric Galois representations, Thesis, Harvard

University, Cambridge, 2000.

1University of Sheffield, School of Mathematics and Statistics, Hicks Building,

Hounsfield Road, Sheffield S3 7RH, United Kingdom.

2Department of Mathematics, Queens College, City University of New York, 65-30

Kissena Blvd, Flushing, NY 11367, USA


	1. Introduction
	2. Principality of Reducibility ideals
	3. ker= kerT
	4. Functoriality of short crystalline representations
	4.1. Notation for Galois cohomology
	4.2. Local cohomology groups
	4.3. Global Selmer groups

	5. Setup for universal deformation ring
	5.1. Main assumptions
	5.2. Definitions

	6. Upper-triangular deformations of 0
	6.1. No infinitesimal upper-triangular deformations
	6.2. Study of upper-triangular deformations to cyclic O-modules
	6.3. Cyclicity of R/Ire
	6.4. Some consequences of the principality of Ire

	7. A commutative algebra criterion
	8. R=T theorems
	9. 2-dimensional Galois representations of an imaginary quadratic field - the crystalline case
	9.1. The setup
	9.2. Assumption 5.1
	9.3. Bounding the Selmer group
	9.4. Modularity of crystalline residually reducible 2-dimensional Galois representations over F

	10. 4-dimensional Galois representations of Q - Yoshida lifts
	10.1. Setup
	10.2. Assumption 5.1
	10.3. Deformations

	References

